Abstract

4D modeling has been an applied research area for around two decades since the first seminal works. In the last years, a number of case studies have been published both for demonstrating the various applications of 4D and for assessing technological propositions. However, in most papers only little place is given to the particular content of 4D models. In parallel, following the growing implementation of Building Information Modelling, 4D is usually recognized as a “BIM use”. In BIM protocols, the Level Of Development of datasets is a fundamental issue. This paper describes two distinct 4D uses conducted on a single pilot project. They aim to assess the levels of graphical and temporal details required for the implemented uses. The authors finally discuss the diversity of 4D uses with 4D models, both planned or ad-hoc, as well as the logical understanding related to 4D LOD.

Keywords: 4D simulation, Construction scheduling, BIM, LOD, Case study research

1. Introduction

4D simulation consists in linking construction activities in a planning to 3D objects in a building model in order to simulate the construction process over time. 4D simulations can be used at different stages of a construction project to analyze the design and its constructability, as well as for construction planning and monitoring [1, 2]. The “4D simulation” concept was introduced before the advent of Building Information Modeling (BIM) [3] but gained from the development of BIM’s three-dimensional models. BIM is a recent approach to object-oriented modeling and integration of multi-dimensional construction data. In the last years it is also more and more related to efficiency and quality of digital information exchanges fostering collaboration between construction practitioners.

It could be mentioned that the adoption rate of 4D simulation by construction practitioners remains low [4–6]. Although it is increasingly used in wide-scale or very specific building/engineering projects, there are quite a few feedbacks from experiments on regular projects. One must say that it is a young technology that still has to be adapted to the real business needs [7]. In particular, if 4D modeling fits with traditional Anglo-Saxon approaches to project management, it is not exactly the case in the French nor Luxembourgish construction management culture. One of the main issues is related to the level of detail of the information comprised in Building Information Models, which should fit to the expected 4D usage performed practitioners. This is a particularly complex issue because 4D simulations incorporate both 3D models’ objects and construction activities schedules. It must therefore manage both the graphical
level of details and the temporal level of detail [8]. In addition, levels of detail must match to business needs corresponding to the usage of the model at different stages of the construction project. In the BIM approach, the term “level of development” (LOD) is widely used to show that detailing is not only about geometry but also deals with non-graphical information.

This paper presents a multi-phases and multi-LOD 4D case study on a construction project in Luxembourg. The theoretical background, the context, the study and its main results are presented. A discussion is finally provided about the findings.

2. Related works

Case studies using 4D simulation have been reported in literature. In 2002, Dawood et al. used two real life case studies in order to introduce a new approach of extensible 4D simulations development. Their aim was to assess the Man-Hours input necessary to run the model prototype. The two cases studied are a school of health project (a complex project) and a primary school project considered as a simpler project [9]. They concluded that “man-hours increase according to availability of design information”.

In 2011, Hartman reported an ethnographic-action research experiment on safe planning of hospital renovations based on 4D models and proposed a method to develop hospital construction process based on 4D simulation [10]. Olde Scholtenhuis and Hartmann presented a second experimentation in 2014 [11]. Using the same ethnographic-action research approach, the researchers explored the influence of scheduling purpose changes on the 4D-model setup. Thus, they studied how practitioners iteratively implemented and used a real-life 4D model. As result, they observed that identifying tasks, allocating resources and communicating among stakeholders are the main purposes at planning stage. Planning logistics, studying dependencies between tasks and mitigating delay are the main focuses of jobsite scheduling. Other recent experiments have been reported including those related to the use of 4D simulation to support workspace conflict analysis [12], path analysis [13], construction quality inspection [14] and fall hazard identification [15].

All these experiments are of course very informative but do not focus on the particular issue related to “LOD”. But the question of the level of development was only quickly addressed in the 4D research works. In 2000, Koo and Fischer noted that 4D models convey a unique perspective of the project, i.e. related to scheduling, with a dedicated LOD. According to them, it does not enable the various practitioners involved in the project to use the 4D model for other needs. These authors studied the feasibility of 4D simulation in commercial buildings and concluded that users should be able to generate models with different LOD, in order to rapidly explore different alternatives [16].

The principle of LOD is to specify the information that the model must contain according to its use at the different stages of a project lifecycle. Numerous definitions were proposed in the context of BIM implementation or BIM guidelines [17–19]. The American Institute of Architects (AIA)’s project BIM protocol is one of the most cited. It defines five levels of development: LOD 100 to LOD 500 [18]. An intermediary level (LOD 350) has been proposed between LOD 300 and LOD 400, to support coordination between different trades [17].

To address the question of the LOD required for particular phases in construction lifecycle, Kriphal and Grilo [20] made a state about the compatibility between design and construction building information models. According to them, the LOD “grows during the design phase, and reaches its peak during construction”. They then stated that level of detail for “design BIM” focuses on geometric complexities, while in construction BIM it specifically focuses on the construction resources including equipment, materials, labour and productivity.

In the following parts, the authors characterize development levels on the basis of these LOD definitions. The research approach is quite similar to the ethnographic-action research approach used in previous research works [21].

3. A multi-LOD case study: The NeoBuild Innovation Center

The NeoBuild Innovation Center (NIC) is a building project planned to host the team of NeoBuild, an innovation cluster for sustainable construction in Luxembourg. The NIC project is highly experimental and the building is designed to support different forms of activities related to construction research, experimental and educational purposes. The construction started in April 2013. BIM has been implemented in the project for multiple purposes: 1) to experimentally model the building, 2) to provide accurate information for the construction site monitoring as well as 3) to include technical assets data required for further facility management. This article focuses on the aspects related to 4D simulation. The 4D experiment presented here was conducted in two parts during the project development: the first part at pre-construction phase and the second part during the construction phase.
3.1. Part 1: 4D simulation at pre-construction phase

The first part of the experiment aimed to study the constructability of technical design choices and to anticipate the sequencing issues in early design stage of the project development. The design work was not entirely over at the time of developing the 4D simulation. In particular many technical details were still to be defined but it did not really impact the results of this part of the experiment which was conducted at a “low” LOD. The main actors involved in the simulation were the architect, the structural and energy engineers, the project manager (technically skilled in this project) and the 4D modeller.

Among the 4D simulation goals identified by Kriphal and Grilo [20], three goals appear more or less clearly in this part of the experimentation: planning (pre-construction planning), visualization and analysis. It consisted in realizing a first sequencing of the construction activities over time on the basis of a rough schedule produced by the architect, in order to spatially visualize the construction sequences, and to analyse the technical constructability, the possible clashes and the other issues in collaborative team meeting sessions. A particular analysis studied the front wall construction steps and the interface between the sealing and the glazed wall.

The 3D model was created using SketchUp at LOD 200 on the basis of architectural design drawings imported from ArchiCAD. The volume and the orientation of the building were precisely modelled but many other 3D elements were approximated. The activities sequencing was done directly within the 4D Virtual Builder© plugin for SketchUp. Results and details are directly exported as slides in MS Powerpoint format. The front wall and the glazed wall were modeled at LOD 300. This made it possible to analyze the wall construction (Figure 1a) and to study with more details the interface between glazed wall and the sealing (Figure 1b). The 4D simulation at this stage made it possible to note that the stairwell and the atrium were planned to be built at the same time, after the construction of the main building and removal of scaffolding. This obviously highlighted an issue for allowing workers to access to the upper floors of the building, as well as to the roof (Figure 1c).

![Figure 1: Illustrations from the pre-construction model](image)

3.2. Part 2: 4D simulation at construction phase

The main purpose of the second part, which was developed in parallel with the evolution of the construction, was to control and coordinate the project, to simulate logistics and manage construction site areas, but also to study more finely some construction details. Apart from the architect, the project manager and 4D modeler, others actors participated in the realization of this part. These actors are the BIM manager, the MEP specialist and the site manager. Many of the goals identified by Kriphal and Grilo [20] appeared in this part of the case study: visualization, analysis, documentation, coordination, planning and control. The aim was to plan, control and coordinate the construction by the various trades, to visualize and analyze conflicts and clashes in models before construction, to analyze and
document logistics management (cranes, scaffolding, restricted areas, etc.). In particular the team aimed also to study in a more detailed way the components of the front wall.

Four models were developed. First the architectural model was created with Revit™. The level of development of the architectural model was LOD 350, but the front wall was modelled at LOD 400. At the same time, a HVAC model (LOD 200) was created using Plancal Nova™ and improved to level 300 (through addition of parameters) with Revit MEP™. Moreover, the architectural model was the basis for the creation of a fourth model with Revit™, the logistic model (LOD 100) with generic logistics elements. The macro schedule proposed by the architect has been detailed in MS Project™. All these files have been imported into Navisworks™ to create the 4D model.

Some clashes were identified. For example, some HVAC elements were not at the right height level and generated overlaps with the ceiling (Figure 2a). For logistics management purpose, restricted areas, worksite huts and garbage collection areas were indicated (Figure 2b). The cranes and scaffolding movements were also studied and optimized. The construction of the front wall was studied with accurate details (Figure 2c). The aim here was about the construction sequence of wooden wall, which is built through many steps involving multiple subcontractors (i.e. woodwork, insulation, and cladding). Moreover windows had to be installed in two separate processes, during and after the assembly of the wall itself. A smooth coordination among actors was then necessary to drill accurate reservations within walls and to ensure that the openings on the wall fit the windows dimensions. This kind of situation often causes issues because of a lack of coordination. In our case, the woodwork subcontractor has been obliged to come back many times to adjust the chambers. The 4D simulation was useful to model the components of the wall, to find the optimal construction sequencing and to provide visual support for contractors.

4. Discussions

4.1 About the work time investment for the case study

In the pre-construction case study, the modelling of architecture components was the most time-consuming effort because data imported from architect’s BIM authoring software was not correctly retrieved in SketchUp mainly because of errors in the way the software was used. Numerous adjustments was required for correctly linking 3D objects to schedule tasks. The modelling of logistics elements took very less time because logistic model consisted in a few generic logistic elements at LOD 100, mainly retrieved from the Sketchup 3D Warehouse.

In the construction phase case study, only the logistics model was created by the 4D modeler. The others models were already created for other purposes in the framework of the BIM approach. It took more time to create the 4D model than in the first part of the case study mainly because the number of elements and details was higher. Although this part aimed to manage more elements and was much more accurate, we noted that it was less time-consuming than the first part. This is because 4D simulation was fully integrated in a wider BIM development workflow where the coordinated architecture, MEP and structure models used had been prepared in previous BIM processes and were reusable by the 4D modeler.
4.2. About the graphical LOD

Overall, the level of development was between LOD 200 and LOD 300 at pre-construction phase and between LOD 100 and LOD 400 during the construction phase. Compared to the Kriphal and Grilo work [20], it is confirmed that the level of development required for the construction phase is higher than the level used at pre-construction stage. But the assumption that a single LOD is sufficient is not justified, particularly during the construction phase. Indeed, if the analysis and planning have used a unique level of development for the two phases, it was not the same for visualization, coordination and documentation for which different levels of development were necessary depending on the 4D model purpose and the particular construction issues that arised during the construction and modeling processes. What determines the choice of levels of development seems to be the usages and the simulation needs which are not uniform throughout the building development phases and also specific to the project and constructive system.

In addition, the models developed by different stakeholders often present different levels of development. Specific issues discovered during the construction process can also require 4D details to be modeled on very limited areas of the project model, either with more or less details (from LOD 100 to LOD 400). Of course, the owner may prescribe a uniform LOD for coordination goal (i.e. LOD 350 according to the BIM Forum working group). But, as observed in our cases some simulation needs may require to model with more or less details a few elements without this given level of development being necessary for the entire model.

4.3. About the temporal LOD

Managing the correspondence between the graphical LOD and the temporal LOD is not a trivial issue in 4D simulation. In the first part of the experiment (pre-construction phase) only a rough schedule was available, as shown on Figure 2. Approximated sequences of construction process were proposed by the 4D modeler mainly based on the major changes from one step to another and not on dates nor milestones or work breakdown structure. The temporal LOD was therefore derived from the 3D model LOD. But a detailed planning was made available from the beginning of the second part of the case study (construction phase). It was a macro planning with a very low LOD, showing the major stages of the construction process. The Project Breakdown Structure elements were not at the same LOD as the 3D models elements. In addition, the site manager had a more detailed schedule but it did not cover the whole construction process. It was therefore necessary to the 4D modeler to define an additional work sequence representing detailed activities in order to make them correspond to 3D models elements.

The creation of this detailed planning has led to a considerable workload. To the extent of our knowledge, this is mainly due to the lack of guidelines for managing temporal LOD requirements. Indeed, it was necessary to export a selection sets nomenclature from 3D model, to sequence the activities corresponding to these selection sets, and to validate the sequences with the site and project managers. It was then also necessary to import the new schedule in order to link construction activities to 3D building elements. This suggests that it might be interesting to define standardized temporal LODs which correspond to the graphical LODs of BIM approach. The ultimate goal can be the creation of standardized 4D LOD, as combinations of graphical LOD and temporal LOD. The seminal research performed by Aalami et al. [22] can be a very interesting starting point.

4.4. About the bidirectional exchange between the construction site and the model

The second part of the experiment took place during the construction phase. It was a situation of interesting bidirectional communication and exchange between the 4D model and the construction site. It was then possible to study on the model a number of problems and to anticipate them before they appear on the construction site. But the model also benefited from feedbacks from the site. Indeed, some problems appeared on the construction site before being studied on the model. In such cases, the feedbacks from the site made it possible to run simulations on the 4D model in order to analyse alternatives, to choose the best solutions to apply on site, and to update the model. For example, it was the case of the front wall construction (see Fig. 2).

Some problems on the site could not be solved with the 4D simulation because of the limitations of the software features. For example, the site manager wanted to automatically generate cable-trays according to the position of cranes and space constraints of the site. The aim was to ensure that electric power supplying was still possible especially when mobile cranes were at some particular locations. This feature was not covered by the software used. A solution of non-automatic cable-trays has been used.
5. Conclusion

This paper reported a 4D simulation case study conducted on the NeoBuild Innovation Center project in Luxembourg. The first part of the experiment was conducted at the pre-construction phase and aimed at studying the constructability of technical choices and at anticipating sequencing issues in collaborative team meetings. The second part was conducted during the construction phase and the aim was to coordinate the site work, to simulate the logistics and site areas but also to analysis more precisely some construction details.

It was shown that it is required to manage multiple graphical LOD corresponding to the different usages of the model either expected (i.e. required) or unexpected (ad-hoc analysis with the model). Moreover different parts of the model came from different actors with different LOD. The graphical LOD necessary for construction phase is higher than the graphical LOD at pre-construction phase. Uniformed temporal LOD should be proposed and validated in order to define LOD for 4D/BIM purposes, a first step towards models sharing among 4D tools. The bidirectional exchange between the construction site and the 4D model in the second part of the experiment was another very interesting finding.

In future works, authors will work on the issue of 4D LOD specifications, including temporal LOD description and correspondence between temporal LOD and existing graphical LOD in BIM approaches.

Acknowledgements

The authors thank NeoBuild, the innovation cluster for sustainable construction in Luxembourg, and its team for the support provided to this research.

References